nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2021, 05, No.210 9-18
FGF5基因编辑细毛羊的健康状况评估
基金项目(Foundation): 国家转基因生物新品种培育重大专项“长毛型转基因超细毛羊新品种培育”(2016ZX08008001-002)
邮箱(Email): xjlwr@126.com;
DOI: 10.16863/j.cnki.1003-6377.2021.05.002
摘要:

动物的健康状况是转基因动物生物安全评价的重要内容之一,而动物的生长发育和生理指标是评估其健康状况的有效手段。课题组前期利用CRISPR/Cas9技术获得了一批成纤维生长因子5(Fibroblast growth factor 5,FGF5)基因功能缺失的中国美利奴细毛羊。为了评估FGF5基因编辑细毛羊的健康状况和生物安全性,本试验对FGF5基因编辑细毛羊与野生型对照羊群体的生长发育性状、血液生理生化指标以及肠道微生物群落结构进行了比较和分析。结果显示:(1)FGF5基因编辑羔羊的0、2、4、6、8月龄的体重、体高、胸围、斜体长与同龄野生型细毛羊无显著差异(P>0.05);(2)不论是羔羊时期还是成年时期,FGF5基因编辑羊的红细胞、白细胞、血小板等15项血常规指标和肾功能、肝功能、醣类代谢、电解质等10项血清生化指标与野生型对照羊相比,二者均无显著差异(P>0.05);(3)利用16S rDNA微生物群落测序技术分析FGF5基因编辑羊与野生型对照羊肠道微生物群落结构。结果显示,在门水平分布中拥有共享优势菌比例达96.2%;α多样性指数差异分析结果显示,二者无显著差异(P>0.05);基因编辑羊与野生型对照羊的PCA图均可以看到明显的聚类;LEfSe分析显示,基因编辑羊有2个生物标记,野生型对照羊有2个生物标记,均为反刍动物肠道内常见菌群。研究表明,FGF5基因功能的缺失未对细毛羊的自身健康造成不利影响。研究结果为FGF5基因编辑细毛羊生物安全评价奠定了基础。

Abstract:

The physiological indexes of growth and development are effective methods to evaluate the health status of animals, which is one of the important research content in bio-safety for transgenic animals. A batch of gene-modified Chinese Merino sheep with fibroblast growth factor 5(FGF5) gene function deletion were obtained by the CRISPR/Cas9 method. In order to evaluate the health and bio-safety status of FGF5 genemodified sheep, the growth and development traits, blood physiological and biochemical indexes, and the composition of intestinal microbial community were compared and analyzed between the gene-modified sheep and wild sheep. Results showed that:(1) no significant difference was observed in body weight, body height,chest circumference and italic length between gene-modified and wild lambs at the same age of 0, 2, 4, 6, 8 months old(P>0.05);(2) no significant difference was found in 15 blood routine indexes(such as red blood cell, white blood cell and platelet) and 10 serum biochemical indexes(such as kidney function, liver function,carbohydrate metabolism and electrolyte) between gene-modified and wild lambs/adults(P>0.05);(3) intestinal microbial community structures of gene-modified and wild sheep were analyzed by 16 S rDNA microbial community sequencing technology. The results showed that the proportion of shared dominant bacteria in the horizontal distribution of phylum was 96.2%. The α diversity index analysis showed that there was no significant difference between the two kinds of sheep(P>0.05). PCA plots of gene-modified and wild sheep both showed obvious clustering. LEFSE analysis showed that there were 2 biomarkers in the gene-modified sheep and 2 biomarkers in the wild sheep, both of which were common microflora in the intestines of ruminants. In conclusion, the loss of FGF5 gene function did not adversely affect the health of Merino sheep.This study laid a foundation for the biosafety evaluation of FGF5 gene-modified sheep.

参考文献

[1] Kim Y G, Cha J,Chandrasegaran S, et al. Hybrid Restriction Enzymes:Zinc Finger Fusions to Fok I Cleavage Domain[J]. Proceedings of the National Academy of Sciences of the United States of America,1996, 93(3):1156-1160.

[2]方锐,畅飞,孙照霖,等.CRISPR/Cas9介导的基因组定点编辑技术[J].生物化学与生物物理进展,2013,40(8):691-702.

[3] Cong L, Ran F A, Cox D, et al. Multiplex Genome Engineering Using CRISPR/Cas Systems[J]. Science,2013, 339(6121):819-823.

[4] Mintz J B. Simian Virus 40 DNA Sequences in DNA of Healthy Adult Mice Derived from Preimplantation Blastocysts Injected with Viral DNA[J]. Proceedings of the National Academy of ences of the United States of America, 1974, 71(4):1250-1254.

[5] Palmiter R D, Brinster R L, Hammer R E, et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes[J]. Nature, 1982, 300(5893):611-615.

[6] Hébert J M, Rosenquist T, et al. FGF5 as a regulator of the hair growth cycle:evidence from targeted and spontaneous mutations[J]. Cell, 1994, 78(6):1017-1025.

[7] Allerstorfer S, Sonvilla G, Fischer H, et al. FGF5 as an oncogenic factor in human glioblastoma multiforme:autocrine and paracrine activities[J]. Oncogene, 2008, 27(30):4180-90.

[8] Daetwyler H D, Hickey J M, Henshall J M, et al. Accuracy of estimated genomic breeding values for wool and meat traits in a multi-breed sheep population[J]. Animal Production Science, 2010, 50(12):1004.

[9] Li WR,Liu CX,Zhang XM,et al. CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep[J]. FEBS J,2017,284(17).

[10]刘新峰.基于fat—1转基因牛的自身安全评价[D].呼和浩特:内蒙古大学,2016.

[11]崔恒敏,陈怀涛.动物红细胞免疫功能的研究进展[J].中国兽医科学,2003,33(5):23-27.

[12] Nieswandt B,Moser M,Pleines I,et al. Loss of talin1 in platelets abrogates integrin activation,platelet aggregation,and thrombus formation in vitro and in vivo[J]. J Exp Med,2007,204(13):3113-3118.

[13]迟雁青,刘琼,林海英,等.血肌酐、血尿素氮评价慢性肾脏病患者肾功能时与年龄的相关性研究[J].中国临床实用医学,2009,3(5):36-38.

[14] Marynissen G,Leclercq-Meyer V,Sener A,et al. Perturbation of pancreatic islet function in glucoseinfused rats[J]. Metabolism-clinical&Experimental,1990,39(1):87-95.

[15]蔡文涛.转基因公羊健康及繁殖性状的安全评价[D].保定:河北农业大学,2014.

[16] Quigley EMM. Gut Bacteria in Health and Disease[J]. Gastroenterology&Hepatology,2013,9(9):560.

[17] Zeng B,Li G,Yuan J,et al. Effects of age and strain on the microbiota colonization in an infant human flora-associated mouse model[J]. Current Microbiology,2013,67(3):313-321.

[18] Russell JB,Rychlik J L.Factors That Alter Rumen Microbial Ecology[J]. Science,2001,292(5519):1119-1122.

[19]李陇平,杨吉,朱海鲸,等. CRISPR/Cas9介导的MSTN/FGF5基因编辑陕北白绒山羊粪便菌群分析[J].中国农学通报,2018,34(14):134-139.

基本信息:

DOI:10.16863/j.cnki.1003-6377.2021.05.002

中图分类号:S826

引用信息:

[1]胡慧宇,任思睿,刘晨曦等.FGF5基因编辑细毛羊的健康状况评估[J].草食家畜,2021,No.210(05):9-18.DOI:10.16863/j.cnki.1003-6377.2021.05.002.

基金信息:

国家转基因生物新品种培育重大专项“长毛型转基因超细毛羊新品种培育”(2016ZX08008001-002)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文