nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 06, No.229 35-45
基于Sentinel数据和机器学习算法的苜蓿遥感识别研究
基金项目(Foundation): 新疆维吾尔自治区自然科学基金资助项目“基于多源遥感数据的人工草地识别与估产研究—以苜蓿为例”(2023D01A75); 国家自然科学基金项目“伊犁毒害草潜在地理分布与遥感识别研究—以白喉乌头为例”(31860679); 新疆维吾尔自治区奶产业技术体系资助项目(XJARS-11); 新疆维吾尔自治区公益性科研院所基本科研业务费专项“饲用小黑麦种质适应性评价与高产栽培高效利用模式研究”
邮箱(Email): xjzheng@sina.com;
DOI: 10.16863/j.cnki.1003-6377.2024.06.006
摘要:

【目的】旨在准确获取苜蓿(Medicago sativa L.)生产空间分布信息,为管理部门提供饲草饲料安全供给情况和技术支持。【方法】本研究使用Google Earth Engine(GEE)平台获取和处理哨兵(Sentine)系列卫星Sentinel-1和Sentinel-2数据,构建了光谱特征、植被指数和雷达极化特征数据集。利用决策树、随机森林、支持向量机和深度学习四种分类算法,评价不同特征组合遥感分类精度,筛选出最优的特征组合和苜蓿遥感识别模型。【结果】结果表明,结合光谱特征、植被指数和雷达极化特征的深度神经网络模型在苜蓿遥感分类中表现最优,总体精度为94.85%,Kappa系数为94.2%;研究证明了机器学习方法在提高苜蓿遥感分类精度方面的有效性;在四种分类模型中,光学特征加雷达特征综合组合的精度均为最高,说明了多源遥感信息对于提高模型性能的重要性。【结论】基于深度神经网络的苜蓿遥感识别模型,在结合光谱特征、植被指数和雷达极化特征的特征组合条件下,识别效果最好。

Abstract:

【Objective】In order to accurately get information on the spatial distribution of alfalfa,so as to provide security supply status of fodder grasses as well as technical support for related authorities.【Methods】Datasets of spectral features,vegetation indices and radar polarization features were constructed by Sentinel-1 and Sentinel-2 data of Sentinel satellites that were acquired and processed from the Google Earth Engine platform. Then four classification algorithms consisting of decision tree,random forest,support vector machine and deep learning,were utilized to evaluate the remote sensing classification accuracy of different feature combinations,so as to screen out the optimal feature combinations and remote sensing classification model of alfalfa.【Results】The results showed that:The deep neural network model combining spectral features,vegetation indices and radar polarization features performed optimally in alfalfa remote sensing classification,with an overall accuracy of 94.85% and a Kappa coefficient of 94.2%.The study demonstrated the effectiveness of machine learning methods in improving the accuracy of remote sensing classification of alfalfa.The combination of spectral features and radar features had the highest accuracy for all four classification models,indicating the importance of multi-source remote sensing information for improving model performance. 【Conclusion】 The deep neural network-based remote sensing identification model for alfalfa was best under the condition of combining the spectral features,vegetation indices and radar polarization features.

参考文献

[1]梁启章,齐清文,姜莉莉,等.“粮经饲”种植结构优化方法与对弈式操作策略[J].中国农业信息,2019,31(2):84-97.

[2]中华人民共和国农业农村部.“十四五”全国饲草产业发展规划[R]. 2022.

[3]陈彦四,黄春林,侯金亮,等.基于多时相Sentinel-2影像的黑河中游玉米种植面积提取研究[J].遥感技术与应用,2021,36(2):324-331.

[4] BASHEER S,WANG X,FAROOQUE A A,et al. Comparison of Land Use Land Cover Classifiers Using Different Satellite Imagery and Machine Learning Techniques[J]. Remote Sensing,2022,14(19):4978.

[5] ZHOU B,OKIN G S,ZHANG J. Leveraging Google Earth Engine(GEE)and Machine Learning Algorithms to Incorporate in Situ Measurement from Different Times for Rangelands Monitoring[J]. Remote Sensing of Environment,2020,23(6):111521.

[6]赵红伟,陈仲新,刘佳.深度学习方法在作物遥感分类中的应用和挑战[J].中国农业资源与区划,2020,41(2):35-49.

[7]何真,胡洁,蔡志文,等.协同多时相国产GF-1和GF-6卫星影像的艾草遥感识别[J].农业工程学报,2022,38(1):186-195.

[8]张羽,杨涛,马吉锋,等.数学形态学辅助下基于光谱指数的作物冠层组分分类[J].农业工程学报,2022,38(7):163-170.

[9]梁继,郑镇炜,夏诗婷,等.高分六号红边特征的农作物识别与评估[J].遥感学报,2020,24(10):1168-1179.

[10]顾晓鹤,潘耀忠,何馨,等.以地块分类为核心的冬小麦种植面积遥感估算[J].遥感学报,2021,14(4):789-805.

[11]王维刚,史海滨,李仙岳,等.遥感订正作物种植结构数据对提高灌区SWAT模型精度的影响[J].农业工程学报,2020,36(17):158-166.

[12]余午阳,王一博,陈新国,等.基于阈值特征-机器学习的青铜峡灌区多年种植结构识别[J].灌溉排水学报,2023,42(12):28-35.

[13]王宇,周忠发,王玲玉,等.基于Sentinel-1的喀斯特高原山区种植结构空间分异研究[J].自然资源遥感,2022,34(4):155-165.

[14]祁向前,孙德浩,贾连星.哨兵2号多时相植被指数作物分类及监测[J].测绘工程,2022,31(6):47-53.

[15]常文涛,王浩,宁晓刚,等.融合Sentinel-2红边波段和Sentinel-1雷达波段影像的扎龙湿地信息提取[J].湿地科学,2020,18(1):10-19.

[16]龚健雅,许越,胡翔云,等.遥感影像智能解译样本库现状与研究[J].测绘学报,2021,50(8):1013-1022.

[17]黄梦鸽,王新鸿,马灵玲,等.草地草种遥感判别技术研究进展[J].草业学报,2023,32(6):167-185.

[18]宁晓刚,常文涛,王浩,等.联合GEE与多源遥感数据的黑龙江流域沼泽湿地信息提取[J].遥感学报,2022,26(2):386-396.

[19]翟鹏飞,李世华,胡月明.协同光学与雷达遥感数据的面向对象土地覆盖变化检测[J].农业工程学报,2021,37(23):216-224.

[20]毛丽君,李明诗. GEE环境下联合Sentinel主被动遥感数据的国家公园土地覆盖分类[J].武汉大学学报:信息科学版,2023,48(5):756-764.

[21]陈彦四,黄春林,侯金亮,等.基于多时相Sentinel-2影像的黑河中游玉米种植面积提取研究[J].遥感技术与应用,2021,36(2):324-331.

[22]姜伊兰,陈保旺,黄玉芳,等.基Google Earth Engine和NDVI时序差异指数的作物种植区提取[J].地球信息科学学报,2021,23(5):938-947.

[23] KOBAYASHI S,IDE H. Rice Crop Monitoring Using Sentinel-1 SAR Data:A Case Study in Saku,Japan[J]. Remote Sensing,2022,14(14):3254.

[24]刘之榆,刘忠,万炜,等.SAR与光学遥感影像的玉米秸秆覆盖度估算[J].遥感学报,2021,25(6):1308-1323.

[25] PAN X,WANG Z,GAO Y,et al. Detailed and Automated Classification of Land Use/Land Cover Using Machine Learning Algorithms in Google Earth Engine[J]. Geocarto International,2022,37(18):5415-5432.

[26] PHAN T N,KUCH V,LEHNERT L W. Land Cover Classification Using Google Earth Engine and Random Forest Classifier—The Role of Image Composition[J]. Remote Sensing,2020,12(15):2411.

[27] GAO C,WU Q,DYCK M,et al. Greenhouses Detection in Guanzhong Plain,Shaanxi,China:Evaluation of Four Classification Methods in Google Earth Engine[J]. Canadian Journal of Remote Sensing,2022,48(6):747-763.

[28]林禹,赵泉华,李玉.一种基于深度传递迁移学习的遥感影像分类方法[J].地球信息科学学报,2022,24(3):495-507.

[29] XU J,YANG J,XIONG X,et al. Towards Interpreting Multi-Temporal Deep Learning Models in Crop Mapping[J]. Remote Sensing of Environment,2021(264):112599.

[30]冯齐心,杨辽,王伟胜,等.基于时序光谱重构的卷积神经网络遥感农作物分类[J].中国科学院大学学报,2020,37(5):619-628.

[31] LIN C H,WANG T Y. A Novel Convolutional Neural Network Architecture of Multispectral Remote Sensing Images for Automatic Material Classification[J]. Signal Processing:Image Communication,2021(97):116329.

[32] LIU N,ZHAO Q,WILLIAMS R,et al. Enhanced Crop Classification Through Integrated Optical and SAR Data:A Deep Learning Approach for Multi-Source Image Fusion[J]. International Journal of Remote Sensing,2023:1-29.

基本信息:

DOI:10.16863/j.cnki.1003-6377.2024.06.006

中图分类号:S541;TP181;TP751

引用信息:

[1]潘竞,赵浩楠,田聪等.基于Sentinel数据和机器学习算法的苜蓿遥感识别研究[J].草食家畜,2024,No.229(06):35-45.DOI:10.16863/j.cnki.1003-6377.2024.06.006.

基金信息:

新疆维吾尔自治区自然科学基金资助项目“基于多源遥感数据的人工草地识别与估产研究—以苜蓿为例”(2023D01A75); 国家自然科学基金项目“伊犁毒害草潜在地理分布与遥感识别研究—以白喉乌头为例”(31860679); 新疆维吾尔自治区奶产业技术体系资助项目(XJARS-11); 新疆维吾尔自治区公益性科研院所基本科研业务费专项“饲用小黑麦种质适应性评价与高产栽培高效利用模式研究”

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文